Molecular phylogenetic analysis of the Persea group (Lauraceae) and its biogeographic implications on the evolution of tropical and subtropical amphi-Pacific disjunctions

Lang Li,6 Jie Li,7 Jens G. Rohwer3,7, Henk van der Werff4, Zhi-Hua Wang2,6, and Hsi-Wen Li5

1Laboratory of Plant Phylogenetics and Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, P. R. China and Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, P. R. China; 2Biozentrum Klein Flottbek und Botanischer Garten, Universität Hamburg, Ohnhorststr. 18 22609 Hamburg, Germany; 3Missouri Botanical Garden, P.O. Box 299, St. Louis, Missouri 63166-0299 USA; 4Herbarium (KUN), Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650204, P. R. China; and 5Graduate University of Chinese Academy of Sciences, Beijing 100049, P. R. China

• Premise of the study: The Persea group (Lauraceae) has a tropical and subtropical amphi-Pacific disjunct distribution with most of its members, and it includes two Macaronesian species. The relationships within the group are still controversial, and its intercontinental disjunction has been investigated with extensive sampling and precise time dating.

• Methods: ITS and LEAFY intron II sequences of 78 Persea group species and nine other Lauraceae species were analyzed with maximum parsimony and Bayesian inference. Divergence time estimation employed Bayesian Markov chain Monte Carlo method under a relaxed clock.

• Key results: Several traditional genera or subgenera within the Persea group form well-supported monophyletic groups except Alseodaphne and Dehaasia. The divergence time of the Persea group is estimated as ~55.3 (95% higher posterior densities [HPD] 41.4–69.9) million years ago (mya). Two major divergences within the Persea group are estimated as ~51.9 (95% HPD 38.9–63.9) mya and ~48.5 (95% HPD 35.9–59.9) mya.

• Conclusions: Persea can be retained as a genus by the inclusion of Apollonias barbujana and exclusion of a few species that do not fit into the established subgenera. A major revision is recommended for the delimitation between Alseodaphne, Dehaasia, and Nothaphoebe. We suggest that the Persea group originated from the Perseeae-Laureae radiation in early Eocene Laurasia. Its amphi-Pacific disjunction results from the disruption of boreotropical flora by climatic cooling during the mid- to late Eocene. The American-Macaronesian disjunction may be explained by the long-distance dispersal.

Key words: amphi-Pacific; biogeography; disjunction; molecular phylogeny; Persea group; Lauraceae.

The Persea group, as described by Rohwer et al. (2009), is a subset of the family Lauraceae. It consists of seven currently recognized genera, Alseodaphne Nees, Apollonias Nees, Dehaasia Blume, Machilus Rumphius ex Nees, Nothaphoebe Blume, Persea Mill., and Phoebe Nees, including a total of ~400 to 450 species. About 80% of these species are distributed in tropical to subtropical Asia, whereas ~20% are found in warm-temperate to tropical regions of the New World (Fig. 1). Only two species, Apollonias barbujana and Persea indica, are distributed in the Macaronesian Islands (Canary Islands and Madeira, with P. indica also on the Azores). As outlined in more detail in Rohwer et al. (2009), the generic delimitation within the Persea group has always been controversial—and somewhat inconsistent. All 80–90 New World species have been placed in a broadly defined genus Persea (Kopp, 1966), regardless of characters such as number of pollen sacs per anther, relative size of tepals, or fate of tepals in fruit, whereas these characters have been used to delimit six genera in the Old World (Alseodaphne [~50 spp.], Apollonias [2 spp.], Dehaasia [~35 spp.], Machilus [~100 spp.], Nothaphoebe [~40 spp.] and Phoebe [~100 spp.]; Li et al., 1984, 2008).

This raises several questions: Are the currently recognized genera monophyletic groups? If so, is American Persea sister to the Asian genera, or is it nested among them? When did the disjunctions within the group and within the genus Persea originate?

Several recent molecular studies confirmed that the Persea group is monophyletic (Rohwer, 2000; Chandler et al., 2001; Rohwer and Rudolph, 2005; Rohwer et al., 2009), but the relationships within the group are still not well resolved. The most recent molecular study of this group was conducted by
Rohwer et al. (2009). They analyzed ITS sequences of 61 *Persea* group species and 30 other Lauraceae species and showed that several traditional genera or subgenera formed well-supported groups. All sampled *Machilus* species formed a strongly supported clade. Likewise, the species that had been placed in *Persea* subg. *Eriodaphne* by Kopp (1966), plus a few *Persea* species that were unknown at her time and *Persea indica* from Macaronesia, formed a well-supported clade, while the species attributed to *Persea* subg. *Persea* by Kopp (1966) formed a strongly supported group within another clade including *Alseodaphne, Dehaasia*, and *Phoebe*. Within the clade composed of *Alseodaphne, Dehaasia, Phoebe*, and *Persea* subg. *Persea*, four *Alseodaphne* species and all sampled *Dehaasia* species formed a well-supported group, and species of the genus *Phoebe* were found in two strongly supported clades. Thus, Rohwer et al. (2009) suggested *Machilus* should be treated as a separate genus, as done by Li et al. (1984), not as a subgenus of *Persea* (e.g., Kostermans, 1957). Similarly, *Persea* subg. *Eriodaphne* could, according to their results, be treated as a separate genus, which probably would also include the Macaronesian *Persea indica* (their suggestion that this genus would have to be called *Mutisiopersea* Kosterm., however, was erroneous; the oldest available name for this group is *Farnesia* Heist. ex Fabr.). *Phoebe* was distinct from both *Machilus* and *Persea*. An inclusion of *Dehaasia* in *Alseodaphne*, as fore-shadowed in critical comments on their delimitation by, e.g., van der Werff (2001), appeared reasonable. Although the work of Rohwer et al. (2009) already provided important information about the phylogenetic structure of the *Persea* group, the phylogeny was far from complete, due to the limited information from ITS sequences. The relationships between major clades were still unclear, and several clades received unsatisfactory support.

The boreotropical flora was hypothesized to span the northern hemisphere during the climatically warm periods of the Paleocene and have contained many thermophilic tropical and subtropical taxa with diffuse origins (Wolfe, 1975; Tiffney, 1985a). Tiffney (1985a) also noted that most evergreen disjunct taxa (e.g., Magnoliaceae, Lauraceae, and Theaceae) migrated during the early Eocene through both the Bering and North Atlantic land bridges. While disjunctions between eastern Asia and eastern North America have been extensively studied in temperate forest elements (review by Donoghue et al., 2001), tropical amphi-pacific disjunctions have received much less attention. In the cases studied in more detail (van der Hammen and Cleef, 1983; Azuma et al., 2001; Fritsch, 2001; Wang et al., 2004), the authors suggested that the tropical amphi-pacific disjunction mostly resulted from an ancestral boreotropical distribution disrupted by Late Eocene climatic cooling, and subsequent, relatively late (Pliocene) immigration into South America.

For the *Persea* group, Chanderbali et al. (2001) reached the same conclusion. Age estimation suggested that the Asian and American members of the *Persea* group diverged around the Eocene-Oligocene boundary, ca. 32 million years ago (mya). Boreotropical ranges were disrupted by climatic cooling at that time (Wolfe, 1975; Wu, 1983; Tiffney, 1985a, b), and so biotic links between North America and Eurasia were severed. The range of the *Persea* group was divided, and its species receded to warmer paleolatitudes in Asia and the Americas. Due to very small sampling numbers within the *Persea* group and limited information from ITS sequences, this deductive conclusion could still be questionable. Therefore, a much denser sampling within the *Persea* group and additional molecular markers with higher resolution would be necessary to make a more solid resolution.

Finding another appropriate marker, besides the ITS sequences, with higher resolution for the phylogenetic reconstruction of the *Persea* group seemed to be a big challenge in our study. Rohwer et al. (2009) explored the phylogenetic potential of 14 cpDNA markers within this group, and they all showed very little variation. We also tried another five cpDNA markers (*psbA-trnH, psbB-psbH, trnS-trnG, rpoB-trnC, trnS-trnfM*), which might have phylogenetic potential within the *Persea* group at the early stage of our study, but the results were still unsatisfactory. Finally, turning our attempts to low-copy nuclear genes seems to be the only promising option.

Low-copy nuclear genes of plants hold great potential to improve the robustness of phylogenetic reconstructions at all
taxonomical levels, especially where universally used cpDNA and nrITS have been unable to generate a strong phylogenetic hypothesis (Sang, 2002). The LEAFY gene is a homeotic gene that regulates the floral meristem induction during the early stages of reproductive ontogeny (Schultz and Haughn, 1991; Weigel, 1995; Blázquez, 1997; Blázquez et al., 1997). Frohlich and Meyerowitz (1997) provided universal primers for the second intron and suggested that the second intron of LEAFY might have evolved at a high rate and might be useful for phylogenetic reconstructions of closely related species. Several recent molecular studies using the LEAFY gene also suggested that it is an excellent candidate as a phylogenetic marker for resolving phylogenetic relationships at lower taxonomic levels due to the generally low copy number in angiosperms and the relatively high level of variation within the introns (Hoot and Taylor, 2001; Oh and Potter, 2003, 2005; Grob et al., 2004; Howarth and Baum, 2005). Therefore, the LEAFY second intron (LEAFY intron II) was chosen as the molecular marker, along with the ITS sequence, for the phylogenetic reconstruction in our study.

Objectives of our study were to (1) explore the phylogenetic utility of LEAFY intron II within the Persea group, (2) elucidate the phylogenetic relationships within the Persea group, and (3) explain the biogeographic disjunction patterns of the Persea group.

MATERIALS AND METHODS

Taxon sampling and DNA extraction—In the present study, a total of 78 species were sampled as representatives of all genera within the Persea group (Appendix 1). Also, these samples represented all sections in some large genera such as Machilus and Phoebe according to the treatment in volume 31 of Flora Reipublicae Popularis Sinicae (Li et al., 1984), as well as in Persea in the sense of Kopp (1966). Based on recent molecular studies (Rohwer et al., 2000; Chanderbali et al., 2001; Rohwer et al., 2009), nine species from four closely related genera (Actinodaphne, Linderia, Litsea, Neolitsea) were selected as the outgroups (Appendix 1).

Total genomic DNA was extracted from silica-gel dried material or herbarium specimens using the method of Doyle and Doyle (1987) as modified by Li et al. (2004) or using the Invotis Spin Plant Mini Kit (Invitik GmbH, Berlin, Germany).

PCR amplification and sequencing—The ITS and 5.8S regions were amplified by using primers of White et al. (1990) and Chanderbali et al. (2001) with minor modifications reported in Li et al. (2004). The PCR program for ITS amplification was 94°C for 2 min; then 35 cycles of 94°C for 30 s, 50°C for 30 s, 72°C for 1 min; followed by a final extension of 72°C for 10 min. To reduce problems caused by the secondary structure of the rather GC-rich ITS, 10% DMSO was included in all amplifications (Buckler and Holtsford, 1996; Buckler et al., 1997).

Initial amplification and sequencing of LEAFY intron II was carried out with the degenerate primers LFlx3-1 and LFlx3r (Frohlich and Meyerowitz, 1997) from a subset of sampled taxa. The sequences obtained were used to design specific primers for the Persea group (LFY-F: 5′-GCC TAG ACT TCT TCC ACC TCT ATG AA-3′ and LFY-R: 5′-CCT TCT TCG CAT ACC TGA ACA C-3′). The PCR program for the LEAFY intron II amplification was 94°C for 2 min; then 35 cycles of 94°C for 30 s, 55°C for 30 s, 72°C for 1 min; followed by a final extension of 72°C for 10 min. The amplified products were then purified using the QIAquick PCR Purification Kit (QIagen, Crawley, UK) or Montage PCR Centrifugal Filter Devices (Millipore, Billerica, Massachusetts, USA) before cloning. Cloning was conducted using the pgEM-T Vector Systems (Promega, Madison, Wisconsin, USA) or the TOPO TA cloning Kit (Invitrogen, Carlsbad, California, USA). At least five positive clones from an individual sample were sequenced. Each fragment was sequenced in both directions using BigDye 3.1 reagents with an ABI 3770 automated sequencer (Applied Biosystems, Carlsbad, California, USA). Sequence chromatogram output files were initially evaluated for base confirmation with Sequencher (Gene Codes Corp., Ann Arbor, Michigan, USA).

Sequence alignment and phylogenetic analysis—Forward and reverse sequences of each fragment were compared to guarantee accuracy and then combined into a single consensus sequence. Both the ITS and LEAFY intron II data sets were aligned using the programs ClustalX 1.81 (Thompson et al., 1997) and edited manually using BioEdit 7.0.9.0 (Hall, 1999). For the combined ITS + LEAFY intron II data set, one of several different LEAFY intron II sequences obtained from one individual sample was randomly chosen to be combined with the corresponding ITS sequence obtained from the same sample because different sequences of LEAFY intron II from the same individual sample almost inevitably formed a single clade (see White et al.). Gaps were coded as simple indels using the program GapCoder (Young and Healy, 2003). Ambiguous blocks in the alignment as well as indels from those blocks were deleted.

Data analysis employed maximum parsimony (MP) using the program PAUP* 4.0b10 (Swofford, 2003) and Bayesian inference using the program MrBayes 3.1.2 (Huelsenbeck and Ronquist, 2001; Ronquist and Huelsenbeck, 2003). In the MP analysis, a heuristic search was performed with 100 random addition sequence replicates, tree-bisection-reconnection (TBR) swapping, collapse of zero-length branches, MulTrees on, and character state changes equally weighted. Because too many trees were found, trees were limited to 1000 for each random addition sequence replicate. Bootstrap values of the internal nodes were obtained with 100 bootstrap replicates. In each bootstrap replicate, we performed 100 random addition sequence replicates followed by TBR swapping, MulTrees on and keeping no more than 1000 trees per random addition sequence replicate.

In the Bayesian analysis, different sequences were defined as separate data partitions. The evolutionary model for each data set was estimated by the program Modeltest 3.7 (Posada and Crandall, 1998; Posada and Buckley, 2004). The Markov chain Monte Carlo (MCMC) algorithm was run for 1 000 000 generations with four incrementally heated chains, starting from random trees and sampling one out of every 100 generations. Examination of the log-likelihood values in Microsoft (Redmond, Washington, USA) Excel and the observed consistency between runs suggested that the burn-in was reached in about 40 000 generations. Thus, the first 1000 trees (100 000 generations) were discarded to make sure the burn-in period was sufficiently long, and the remaining trees were used to construct the 50%-majority rule consensus tree.

To evaluate the congruence of ITS and LEAFY intron II data sets, we conducted an incongruence length difference (ILD) test (Farris et al., 1994) with 100 replicates of the heuristic search, using the same parameters as in the MP analysis, with 100 random addition sequence replicates in PAUP*.

Bayesian dating—We herein employed ITS and LEAFY intron II sequences to estimate the divergence time of each clade within the obtained molecular tree, especially the divergence time of the Persea group and the time of two major divergences within it. Both ITS and LEAFY intron II sequences were used for dating divergence times because higher accuracy and more confidence can be inferred based on multiple sequences (Renner, 2005).

Divergence time estimation employed the Bayesian MCMC method under an uncorrelated lognormal relaxed clock (Drummond et al., 2006) using the program BEAST v1.5.3 (Drummond and Rambaut, 2007). The program BEAST v1.5.3 was run with the following settings: 10 000 000 generations with the first 1000 000 generations discarded as burn-in in BEAST. Different sequences were defined as separate data partitions, and model parameters were unlinked across partitions. Posterior distributions of parameters were approximated using two independent MCMC analysis of 20 million steps each, with the first 10% being discarded. The log files were combined to check for convergence on the same distribution and to ensure adequate sample sizes using the program Tracer v1.5 (Drummond and Rambaut, 2007). The samples from the posterior were summarized on the maximum clade credibility tree using the program TreeAnnotator v1.4.8 (distributed with BEAST) and visualized using the program FigTree v1.3.1. Means and 95% higher posterior densities (HPD) of age estimates were obtained from the combined outputs using Tracer v1.5.

Lauraceae fossil and calibration—Fossil records of Lauraceae include flowers, fruits, inflorescences, leaves, and wood ranging from the early Cretaceous to the late Tertiary (Herendeen, 1991; Eklund, 2000; Frumin et al., 2004). However, there are few reliable fossils that can be unambiguously assigned to an extant group of Lauraceae (Eklund and Kváček, 1998; Eklund, 2000). Alseodaphne changchangensis Jin et Li (Lauraceae), with a perfectly preserved fossil leaf, was found in the coal-bearing series of the Changchang Formation from the Changchang Basin of Hainan Island, China (Li et al., 2009). Based on the features of the sporopollen assemblage, the age of the coal-bearing series of the Changchang Formation is late Early Eocene to early Late Eocene, and this fossil specimen is the earliest occurrence at the lowest latitude for the genus Alseodaphne (Li et al., 2009).
Based on the molecular tree obtained from the combined ITS + LEAFY intron II data (Fig. 5), the placement of the fossil of Alseodaphne changshangensis for age calibration seemed to have several options. Five nodes (A, 1, 2, 3, and 4 in Fig. 5) were considered as candidates for the calibration point. To check the results for their credibility, we calculated what the different calibrations would mean for the age of the Persea group, and checked how they compare with the estimates of Chanderbal et al. (2001).

RESULTS

Sequence characters—The length of ITS sequences of the ingroups ranges from 511 to 568 bp, and the GC content is 69.00% to 74.67%. The length of ITS sequences of the outgroups ranges from 522 to 561 bp, and the GC content is 69.16 to 71.66%. The ITS data set has 613 aligned positions, as well as 29 new indel characters (obtained by gap-coding). Of the 642 total characters, 216 are variable (33.64%) and 171 (26.64%) are parsimony-informative.

The length of LEAFY intron II sequences of the ingroups ranges from 674 to 740 bp, the GC content is 38.83 to 41.54%. The length of the LEAFY intron II sequences of the outgroups ranges from 679 to 724 bp, and the GC content is 39.33 to 40.80%. The LEAFY intron II data set has 770 aligned positions, as well as 35 new indel characters (obtained by gap-coding). Of the total 805 characters, 455 are variable (56.52%) and 339 (42.11%) are parsimony-informative.

Results of the ILD test showed significant incongruence between ITS and LEAFY data sets (P = 0.011). Nevertheless, these two data sets were not only analyzed separately, but also combined and analyzed simultaneously, to get a more resolved and better-supported topology, as in Li et al. (2007). At least in the Bayesian analysis, the combination is not expected to be problematic, as the different partitions were allowed to evolve under different models. The combined ITS + LEAFY intron II data set has 1377 aligned positions, as well as 50 new indel characters (obtained by gap-coding). Of the total 1427 characters, 585 are variable (41.00%) and 386 (27.05%) are parsimony-informative. All these numbers differ from the sums of the above data sets because not all sequences present in the LEAFY intron II data set are also represented in the combined ITS + LEAFY intron II data set.

MP analysis—MP analysis of the ITS data set resulted in 86004 MP trees, 599 steps long, with a consistency index (CI) of 0.4541 and a retention index (RI) of 0.7716. For the data set of total LEAFY intron II sequences, 100000 MP trees were retained, 810 steps long, with a CI of 0.7296 and a RI of 0.9186. For the combined ITS + LEAFY intron II data set, 2507 MP trees were retained, 1234 steps long, with a CI of 0.5810 and a RI of 0.7939.

The consensus trees obtained from both MP and Bayesian analysis, based on the different data sets (ITS, LEAFY intron II, and combined ITS + LEAFY intron II) respectively, are mostly congruent in their topologies. Their major clades are identical, only with very few differences in some terminal branches. The Bayesian consensus trees always have relatively higher branch supports than the MP consensus trees. Here, only Bayesian consensus trees with both bootstrap support (BS) values and posterior probability support (PPS) values are presented for demonstration.

Bayesian analysis (Figs. 2–4) —The Bayesian consensus tree obtained from the ITS data set (Fig. 2) is largely congruent with the work of Rohwer et al. (2009). The three principal clades within the Persea group are (1) the Persea clade I, (2) the Machilus clade, and (3) a clade including species of Alseodaphne, Dehaasia, Nothaphoebe, Persea, and Phoebe. Some major clades in the ITS tree, which also appear in the ITS + LEAFY intron II tree (Fig. 4), are labeled for comparison. Species showing a conflicting position in the ITS and the ITS + LEAFY intron II trees are marked with ✠.

The Bayesian consensus tree based on the data set of total LEAFY intron II sequences (Fig. 3) shows that several different sequences obtained from one individual sample form a strongly supported monophyletic clade in most cases. Only a few exceptions occur among very closely related species (mostly in the genus Machilus, where the genetic distances are minimal, anyway). As in Fig. 2, some major clades are shown for comparison with the ITS + LEAFY intron II tree. Species marked with ✠ show a conflicting position in the LEAFY intron II and the ITS + LEAFY intron II trees.

Compared with the ITS + LEAFY intron II tree, both the ITS and the LEAFY intron II trees show less resolution and lower branch supports. Thus, these two trees are not used for the following discussion, and their topologies are not described any further.

The Bayesian consensus tree based on the combined ITS + LEAFY intron II data set (Fig. 4) is largely congruent or at least compatible with the LEAFY intron II tree (Fig. 3). As in the separate ITS and LEAFY intron II trees, the outgroup species are consistently separated from the Persea group, and all species (so far investigated) from the Persea group form a well-defined monophyletic clade (90% BS and 100% PPS). Within the Persea group, there are three principal clades (clade I, II, and III). At the top of the Persea group, clade I consists not only of all representatives of Machilus and Dehaasia included in the present study, but also of most species of Alseodaphne (including the type species, A. semecarpifolia) and Nothaphoebe umbelliflora, the only representative of that genus here. It receives 100% PPS (but no significant BS), and has two principal subclades. The Machilus Clade consists of all representatives of Machilus included in the present study, plus two Phoebe species. It receives both 100% BS and PPS, and shows very little internal resolution, due to extremely low genetic distances among the species of Machilus. Sister to the Machilus clade is Dehaasia caesia with both 100% BS and PPS. The Alseodaphne-Dehaasia clade consists of four Alseodaphne species and four Dehaasia species, as well as Nothaphoebe umbelliflora from tropical Asia, which is deeply imbedded among Alseodaphne and Dehaasia species. The Alseodaphne-Dehaasia clade receives 84% BS and 100% PPS, and shows very good internal resolution. Clade II, which is sister to clade I, consists mainly of American Persea species, plus Persea indica and Apollonias barbujana from the Macaronesian Islands. It receives no significant BS but a moderate PPS (92%) and has two principal subclades. The Persea clade I, which receives 84% BS and 100% PPS, comprises all species (so far investigated) that had been placed in Persea subg. Eriodaphne by Kopp (1966), plus a few that had been unknown at her time, and Persea indica. The Persea clade II, which receives 73% BS and 100% PPS, consists of Persea americana and P. steyermarkii, two of the three species attributed to Persea subg. Persea by Kopp (1966), as well as Apollonias barbujana. At the bottom of the Persea group, clade III consists of 23 species from three genera (Alseodaphne, Persea and Phoebe), and receives 100% PPS but no significant BS. Within clade III, three principal subclades form a trichotomy. The Phoebe clade consists of most Phoebe species.
Fig. 2. Bayesian consensus tree based on ITS data. Bootstrap values (≥50%)/Bayesian posterior probabilities (≥90%) are shown above branches. ** = both bootstrap value and Bayesian posterior probability 100%. Species marked with ◆ show conflicts of these major clades between ITS and ITS + LEAFY intron II trees.
Fig. 3. Bayesian consensus tree based on LEAFY intron II data. Bootstrap values (≥50%)/Bayesian posterior probabilities (≥90%) are shown above branches. • = both bootstrap value and Bayesian posterior probability 100%. Species marked with ♦ show conflicts of these major clades between LEAFY intron II and ITS + LEAFY intron II trees.
included in the present study, and it receives 99% PPS but no significant BS. Within it, two principal subclades are indicated. The Phoebe clade I receives 73% BS and 100% PPS, while the Phoebe clade II receives 75% BS and 100% PPS. Persea nudigemma is weakly supported (only 72% PPS, not shown) as sister species to the Phoebe clade. Next to Persea nudigemma, three Alseodaphne species and two Persea species form a small clade that receives weak support (only 69% BS, not shown). At the bottom of clade III, Alseodaphne andersonii and A. petiolaris form a small clade that receives both 100% BS and PPS.

Bayesian estimation of divergence times (Fig. 5)—The age estimates for the divergence time of the Persea group (node B, Fig. 5) using the different possible calibration points are given in Table 1. Because calibration at nodes 1, 2, 3, and 4 resulted in unlikely old age estimates (see discussion), we finally fixed the age of node A (Fig. 5) at 43 mya with a standard deviation of 3.5 mya, ranging from ~37 to 49 mya and roughly matching the late early Eocene to early late Eocene.

The divergence time of the Persea group was estimated as ~55.3 mya (95% higher posterior density [HPD] interval 41.4—69.9 mya, node B, Fig. 5). The first divergence within the Persea group was estimated as ~51.9 mya (95% HPD 38.9—63.9 mya, node C, Fig. 5), and the second divergence was obtained as ~48.5 mya (95% HPD 35.9—59.9 mya, node D, Fig. 5).

DISCUSSION

Machilus clade—Just as the results of Rohwer et al. (2009) and Chen et al. (2009) have shown, this genus is by far the most homogeneous group in our molecular analysis. Our results indicate that Machilus is monophyletic within the Persea group, and its persistent and spreading to reflexed tepals in fruit are important morphological characters for its generic delimitation against the closely related genera Alseodaphne, Dehaasia, Nototrophehe, and Persea. The position of Phoebe faberi and P. minutiflora within the Machilus clade is not surprising. Phoebe faberi originally had been described as Machilus faberi by Hemsley (in J. Linn. Soc., Bot. 26: 375. 1891), then it was transferred to Phoebe by Chun [in Contr. Biol. Laboratory. Sci. Soc. China 1(5): 31—32. 1925]. Its persistent perianth lobes are ovate, leathery, slightly clasping or lax, with extorse apices when fruiting (Li et al., 2008). Phoebe minutiflora has almost the same perianth characters as M. faberi when fruiting. Its persistent perianth lobes are slightly thickened, loose, with the apex extorse or patent (Li et al., 2008). Compared with the perianth characters of Phoebe species, where the tepals are leathery to woody, conspicuously thickened and clasping the base of the fruit, these two species are obviously different and more like Machilus species. Besides, the fruits of Phoebe faberi and P. minutiflora are globose, also more like Machilus species instead of ellipsoid to elongate, as in Phoebe species (Li et al., 2008). Therefore, we think these two species are misplaced in Phoebe and should be transferred to Machilus. The position of Dehaasia caesia as sister to Machilus is questionable. Our sample is from a sterile specimen, so that we cannot exclude a misidentification, even though the vegetative characters matched Dehaasia caesia (Deby Arifiani, Herbarium Bogoriense, Research Center for Biology-LIPI, Cibinong Science Center, Indonesia, personal communication).

Our study again failed to get a good resolution of the internal structure within the genus Machilus, just like the previous works by Rohwer et al. (2009) and Chen et al. (2009). This might be explained by a rather recent species differentiation and/or a strongly decreased substitution rate within this genus (Rohwer et al., 2009). Nevertheless, the presently accepted sections or subsections of Machilus as treated by Li et al. (1984) still are questionable according to the limited resolution within the Machilus clade. The largest group within the Machilus clade receiving a high PPS in the Bayesian analysis, the clade including Machilus robusta, M. sp. W14068, M. sp. W14071, M. japonica, M. decursinervis, M. grisii, M. platycarpa, M. yunnanensis and Phoebe minutiflora, includes at least one species from Machilus sect. Machilus, one species from sect. Glabriflorae S. Lee, one species from sect. Megalocarpae S. Lee, and two species from sect. Tomentosae S. Lee. This inconsistency suggests that traditionally used morphological features, such as the presence or absence of hairs on the outside of the tepals in flower, and the shape and size of the fruit are not sufficient as characters for infrageneric delimitation within Machilus. However, a much denser sampling of the species and some new molecular markers with higher resolution will be necessary to resolve the relationships within the genus.

Persea clade—Although most of the Persea species (so far investigated) form a monophyletic clade with a moderate PPS (92%, Fig. 4), the presence of Apollonias barbujana within this clade and the absence of three other Persea species (i.e., Persea nudigemma, P. sphaerocarpa and P. sp. W21874) indicate that the genus Persea, as presently circumscribed, is polyphyletic. Despite that, the two subgenera (Persea subg. Eriodaphne and P. subg. Persea), that were accepted by Kopp (1966), are well supported as monophyletic groups by the molecular data (Fig. 4). Persea clade I, which receives 84% BS and 100% PPS, comprises all species (so far investigated) that had been placed in Persea subg. Eriodaphne by Kopp (1966), plus a few that had been unknown at her time, and the Macaronesian Persea indica. Within Persea clade II, a small clade receiving 100% BS and PPS consists of Persea americana and P. steyermarkii, two of the three species that had been attributed to Persea subg. Persea by Kopp (1966). The third species, Persea schiedeana Nees, is not included here, but was strongly supported as sister to these two species in the analysis of Rohwer et al. (2009). In contrast to their study, however, our new results allow retaining Persea as a monophyletic genus, if a few species that do not fit morphologically into the established subgenera are excluded (see below), and if Apollonias barbujana is included. The genus Apollonias has been kept separate mainly because of its disparangiatus anthers, but several Persea species (albeit in subgen. Eriodaphne) have disparangiatus anthers as well (Kopp, 1966), and the number of pollen sacs alone is not sufficient as a generic character (Rohwer et al., 2009). The tepals of A. barbujana are equal to slightly unequal, and in the fruiting stage they are pressed to the berry, with only their base slightly thickened and their tip sometimes breaking off. They are not too different from those of Persea americana (subgen. Persea), where they are not appressed but spreading to reflexed, but ultimately their basal part persists (even though this appears insignificantly small, compared to the size of the fruit). Because in our molecular data A. barbujana forms a relatively well-supported clade (the Persea clade II with 73% BS and 100% PPS) along with P. americana and P. steyermarkii, we suggest to include A. barbujana in Persea (rather than to keep Apollonias and to create a new genus for Persea subgen. Eriodaphne, which would require about a hundred new combinations). Unfortunately, our
Fig. 4. Bayesian consensus tree based on ITS + *LEAFY* intron II combined data. Bootstrap values (≥50%)/Bayesian posterior probabilities (≥90%) are above branches. • = both bootstrap value and Bayesian posterior probability 100%.
September 2011] LI ET AL. — MOLECULAR PHYLOGENY AND BIOGEOGRAPHY OF THE Persea GROUP

9

Asian genera (e.g., Machilus or Phoebe) rather than with A. barbujana.

As in the results of Rohwer et al. (2009), the ITS sequences and combined data in the present study (Figs. 2, 4) clearly support an American affinity of the Macaronesian Persea indica. Although the LEAFY intron II tree (Fig. 3) is conflicting in this respect, the branch linking P. indica to Asian taxa is very weakly supported (only 54% PPS, not shown). Therefore, we think it is safe to reject the opinion of Rohwer (1993) that this species was possibly misplaced in Persea. The tepals of P. indica are equal, as in P. areolatocostae (also included in Persea clade I), although most species of Persea subg. Eriodaphne have unequal tepals. In the fruiting stage, its tepals are at least initially appressed to the berry (but sometimes spreading in old fruits), with their base slightly more thickened than in Apollonias and their tip breaking off more frequently.

Attempts to amplify any DNA fragment from herbarium material of the second species of Apollonias, A. arnottii Nees from India, have not been successful so far. Rohwer et al. (2009) expected that this species would group with one of the

Table 1. The age estimates for the divergence time of the Persea group (node B, Fig. 5) using different possible calibration points.

<table>
<thead>
<tr>
<th>Calibration point</th>
<th>Mean of age estimation (mya)</th>
<th>95% HPD (mya)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node 1</td>
<td>−166.8</td>
<td>86.5−260.3</td>
</tr>
<tr>
<td>Node 2</td>
<td>−141.6</td>
<td>63.8−232.9</td>
</tr>
<tr>
<td>Node 3</td>
<td>−80.2</td>
<td>51.1−115.4</td>
</tr>
<tr>
<td>Node 4</td>
<td>−66.5</td>
<td>46.0−91.0</td>
</tr>
<tr>
<td>Node A</td>
<td>−55.3</td>
<td>41.4−69.9</td>
</tr>
</tbody>
</table>

Notes: HPD, high posterior density

Fig. 5. Chronogram of the Persea group and outgroups based on the ITS and LEAFY intron II combined data inferred using BEAST software. Calibration point is indicated with black asterisk. Gray bars at the internal nodes represent the 95% high posterior density credibility interval for node ages.
Thus, the difference in this character is only gradual. The fruiting pedicle, however, is more thickened toward the fruit than in the other Persea species (except P. americana, where the fruit is much larger).

Except three species (i.e., P. nudigemma, P. sphaerocarpa and P. sp. W21874), all Persea species investigated in the present study as well as A. barbujana form the monophyletic Persea clade. Although Persea subgen. Erdiophane and Persea subgen. Persea form distinct clades in the molecular tree and (usually) can be recognized by morphological differences, they still belong to one monophyletic group in the present study. Thus, the suggestion of treating Persea subg. Erdiophane as a separate genus (Rohwer et al., 2009) seems unnecessary.

Phoebe clade—All species of the genus Phoebe investigated based on ITS data by Rohwer et al. (2009) were found in two well-supported clades, part of an unresolved trichotomy with the Alseodaphne-Dehaasia clade. According to the molecular tree based on the combined ITS + intron II data (Fig. 4), both Alseodaphne and Dehaasia are polyphyletic within the Persea group. Alseodaphne has at least two different origins. Most of the nine species investigated, four fall into Alseodaphne-Dehaasia clade, whereas five are found in the two clades of the Alseodaphne-Persea group. The Alseodaphne-Dehaasia clade includes the type species, A. semecarpifolia, so that the name Alseodaphne will stay with this clade, which represents the traditionally recognized typical Alseodaphne species distributed mainly in tropical Asia. The origin of the other five Alseodaphne species is apparently different. Most of them (except A. sp. W14264) are from tropical and subtropical China, and they may have a single origin, as the branch linking three of them to two species currently placed in Persea is not significantly supported. Li et al. (2009) discovered the fossil of Alseodaphne changchangensis in Changchang Basin of Hainan Island (China), which is the earliest occurrence of the genus Alseodaphne and closest to the living species A. hainanensis (within the Alseodaphne-Persea group). The fact that Alseodaphne andersonii and A. petiolaris, which form a separate clade here, differ also morphologically from the traditionally recognized Alseodaphne species has already been discussed by Rohwer et al. (2009). In Yunnan (China), at least three further Alseodaphne species (A. sichourensis H. W. Li, A. maritipoensis (H. W. Li) H. W. Li and A. hokousensis H. W. Li) are similar to A. andersonii and A. petiolaris, so that we can expect this group to become larger with increased taxon sampling.

The species of the genus Dehaasia are found scattered throughout the Alseodaphne-Dehaasia clade (Fig. 4), with the exception of D. caesia (see above). Therefore, it will eventually become inevitable to include Dehaasia in Alseodaphne. It has long been known that the two genera are insufficiently separated (e.g., Kostermans [1973, p. 425]: “Dehaasia and Alseodaphne are very closely related; the only difference is the number of anther cells, 2 in the former, 4 in the latter… This anther distinction is not correlated with vegetative characters, hence in a sterile state it is not possible (unless the species are known) to distinguish between Alseodaphne and Dehaasia”); van der Werff [2001, p. 136]: “Dehaasia is closely related to Alseodaphne, from which it differs only in having 2-locular instead of 4-locular anthers. Vegetatively, it is indistinguishable from Alseodaphne and without stamens assigning a specimen to either of these genera is a guess.”). Of course, we urge that a careful revision be made before creating dozens of new combinations (although many species have a name in both genera already).

Nothaphoebe umbelliflora, the only species of Nothaphoebe in the present study, is nested in the Alseodaphne-Dehaasia clade, as sister to Alseodaphne gigaphylla (Fig. 4). Rohwer et al. (2009) found a similarly close relationship between Nothaphoebe umbelliflora and Alseodaphne nigrescens (Gamble) Kosterm. As the sequences involved were all from sterile specimens from Singapore, they assumed that a misidentification might be involved. However, a similarly close relationship between N. umbelliflora and an Alseodaphne species was found in the present study, based on another resource of N. umbelliflora from Indonesia and different Alseodaphne species, so that the assumption made by Rohwer et al. (2009) can be rejected. van der Werff (2001) pointed out that the delimitation between Alseodaphne and Nothaphoebe was rather vague (only tepals absent vs. persistent when fruiting), and Nothaphoebe should be placed in Alseodaphne.

According to the results of our study, we think a major revision is needed for the delimitation between Alseodaphne, Dehaasia, and Nothaphoebe due to the weakness of the generic concepts within the Persea group. The revision, however, would require a far larger number of species of these three genera to be investigated because the taxon sample is too small in the present study and any conclusion would be premature.

Persea nudigemma, P. sphaerocarpa, and P. sp. W21874—

These three Persea species are well separated from most of the Persea species investigated in the present study (Fig. 4). Persea nudigemma appears to be more closely related with the Phoebe clade than with the Alseodaphne-Persea group, but this relationship gets only 72% PPS (not shown) and is therefore still uncertain. As described by van der Werff (1994), Persea nudigemma appears to belong to a small group of neotropical Persea species with equal tepals that are pubescent on both sides and persistent in the fruiting stage (e.g., P. bernardii Kopp, P. riginis Allen, P. silvatica van der Werff, species not investigated in the present study). These species are similar not only to Persea indica, but also to Phoebe, which may explain the position of Persea nudigemma in our analysis. The position of Persea sphaerocarpa within the Alseodaphne-Persea group in the
analysis is also explainable. van der Werff (2002, p. 575) already noted that this species, together with *Persea albiramea* van der Werff and *P. laevifolia* van der Werff (both collected in Central America), "would very likely be included in *Alseodaphne* had they been collected in tropical Asia." Although *Persea* sp. W21874 is not particularly similar to *P. sphaero-
carpa*, its position is not really surprising, either. Its LEAFY intron II sequence differs by just three base pairs from that of *Persea sphaerocarpa*. With its stubby twigs with large inflorescence scars and conspicuous bract scars, it is reminiscent not only of *Persea americana*, but also of some species presently placed in *Alseodaphne*, particularly *Alseodaphne petiolaris*, which is found in a closely related clade here.

The variation among the neotropical species presently placed in the genus *Persea* is comparable to the variation among the paleotropical species of the *Persea* group, but while the paleotropical species are divided into several genera that are hard to separate, the neotropical species are placed in one variable ge-
tropical species are divided into several genera that are hard to separate, the neotropical species are placed in one variable gen-
us. Apparently, the origins of *Persea nudigemma*, *P. sphaero-
carpa*, and *Persea* sp. W21874 are quite different from most *Persea* species, which belong to the *Persea* clade. Together with the species in this group presently placed in *Alseodaphne* they may perhaps form an additional, hitherto unrecognized genus. However, it is not yet clear how this group can be recog-
nized morphologically—and we certainly do not want another ill-defined genus. The alternative, however, viz. stretching the limits of *Phoebe* so far as to include these species, is not appealing either.

Origin of the *Persea* group—Fixing the calibration point at node 1 or 2 resulted in the estimation of the divergence time of the *Persea* group (node B, Fig. 5) as ~166.8 mya or ~141.6 mya. This age estimation is obviously much too old, older than or about as old as the oldest undisputed angiosperm fossils (~140 mya, Else Marie Friis, Swedish Museum of Natural His-
tory, personal communication). Fixing the calibration point at node 3 or 4 resulted in the estimation of the divergence time of the *Persea* group (node B, Fig. 5) as 80.2 mya or 66.5 mya. This would be late Cretaceous, a time from which the Lauraceae are known to have existed—the earliest lauraceous fossils of the extinct genus *Mauldinia* are ~100 million years old (Drinnan et al., 1990, Frumin et al., 2004). However, these estimates appear still too high, considering the fact that the *Persea* group is among the more distal branches in the Lauraceae (Rohwer and Rudolph, 2005). According to the work of Chanderbali et al. (2001), some basal lineages of Lauraceae were established on either Gondwana or Laurasia by the late Cretaceous. *Caryodaphnopsis* Airy Shaw and *Neocinnamomum* H. Liu, with their relatively basal positions in Lauraceae, might be the only extant representatives of the ancient Lauraceae flora documented in mid- to late Cretaceous (Chanderbali et al., 2001). Thus, the fact that no fossil evidence supports the late Cretaceous origin of the *Persea* group makes the placement of the calibration point at node 3 or 4 somewhat questionable. We finally chose node A as the calibration point and obtained a reasonable age estimation (discussed below). It was also reasonable to place the fossil of *Alseodaphne changchangensis* at the beginning of this lineage because it was the earliest occurrence of the genus *Alseodaphne* and related to the extant *A. hainanensis*.

Using this calibration, we estimated the divergence time be-
tween the *Persea* group and the Laureae as ~55.3 mya (95% HPD 41.4–69.9 mya, node B, Fig. 5) in the present study. Al-
though this is about 10 million years earlier than the estimates

made by Chanderbali et al. (2001) as 44 ± 7 mya and by Nie et al. (2007) as 43.54 ± 1.96 mya, we reach the same general conclusion as Chanderbali et al. (2001, p. 104): "Remaining genera place in a terminal *Perseae-Laureae* clade that radiated in early Eocene Laurasia." This estimation of an early Eocene origin of the *Persea* group is supported by the fossil record. The hemispherical cupules of the London Clay Flora (Reid and Chandler, 1933) are restricted to Laurae and Cinnamomeae of the *Perseae-Laureae* clade. Well-preserved flowers with the general floral structure of genera in the *Persea* group and Cinnamomeae, but not other members of Lauraceae, have been described from Eocene deposits in North America (Taylor, 1988) and Late Eocene Baltic amber (Conwentz, 1886). There-
fore, our results suggest that the *Persea* group originated from the *Perseae-Laureae* radiation in early Eocene Laurasia.

The amphi-pacific disjunction pattern of the *Persea* group—According to paleobotanical and geological evidence, the early Eocene (54–50 mya) was the warmest period in the Tertiary, and the boreotropical flora spread circumboreally to high latitudes in the northern hemisphere (Reid and Chandler, 1933; Chandler, 1964; Wolfe, 1978, 1997; Collinson et al., 1981; Miller et al., 1987; Graham, 1999). The paleobotanical evidence indicates that in the late early and early mid-Eocene (~50–48 mya) a significant cooling occurred, followed by two steady intervals (~46–43 and ~37–34 mya) that were separated by a cool interval (~42–38 mya) in the mid- to late Eocene (Wolfe, 1978, 1997). Oxygen isotope records also suggest very warm temperatures in the early Eocene, but cooling proceeded during the mid- to late Eocene, with small fluctuations (Miller et al., 1987). The cooling events caused movement of the boreotropical floral elements to lower latitudes, leading to segregation of an-
cestral lineages of modern tropical plants between North America and Eurasia. Much later, with the closure of the Central American land bridge in the Pliocene, several elements that to-
day show a tropical amphi-pacific disjunction appear in north-
ern South America (van der Hammen and Cleef, 1983; Azuma et al., 2001; Fritsch 2001; Wang et al., 2004).

The molecular phylogenetic analysis indicates that the first divergence within the *Persea* group occurred at ~51.9 mya (95% HPD 38.9–63.9 mya, node C, Fig. 5), within the warmest period in the Tertiary (50–54 mya). The boreotropical flora, in-
cluding ancestral lineages of modern *Persea* group species, was distributed to high latitudes in the northern hemisphere. Thus, these ancestral lineages could spread between North America and Eurasia through high-latitude land bridges (Beringia or North Atlantic land bridge). The second divergence within the *Persea* group occurred at ~48.5 mya (95% HPD 35.9–59.9 mya, node D, Fig. 5) according to the molecular phylogenetic analysis. This would fall into the cooling period in the late early and early middle Eocene (50–48 mya). As thermophilic tropical elements, ancestral lineages of modern *Persea* group species would quickly respond to the cooling and moved to lower latitudes. The connection between North America and Eurasia was weakened and finally disrupted, so that there was no more exchange between the two continents among these ancestral lineages. This scenario would be consistent with the separation between the bulk of the Asian and American species within the *Persea* group (clade I and II in Fig. 4). Due to further cooling of the global climate, the *Persea* group, along with other boreotropical floral elements, later moved to subtropical and tropical regions of both continents, finally forming the tropical and sub-
tropical amphi-pacific disjunction pattern.
The disjunct distribution between the three neotropical species currently placed in *Persea* (*P. nudiflora, P. schaeroepcarpa* and *P. sp. W21874*) and the Asian species (*Phoebe* and some *Alseodaphne* species) within clade III (Fig. 4) cannot be explained by the disruption of the boreotropical ranges during the mid- to late Eocene as their divergence time was rather late according to the age estimation (Fig. 5). Their relative late divergence may indicate that a few long-distance dispersal events involving members of the *Persea* group happened after the segregation between North America and Eurasia, although the dispersal mechanism and routes are still unknown. As the distribution center of the modern *Phoebe* and *Alseodaphne* is tropical Asia, the earliest *Alseodaphne* fossil has been found in Hainan (China), and there are two American clades among three Asian clades in clade III (Fig. 4), a long-distance dispersal from Eurasia to North America appears more likely than vice versa. Thus, the present disjunction pattern of the *Persea* group may not only result from the segregation between North America and Eurasia but also from a few long-distance dispersal events (more discussion about long-distance dispersal can be found later, on the American-Macaronesian disjunction). Nevertheless, the relatively weak supports for the affinities between the three neotropical *Persea* species and the Asian species of clade III (*Phoebe* and some *Alseodaphne* species) make our assumption rather preliminary. Therefore, we suggest the neotropical species that are presently placed in *Persea* but fit neither of the established subgenera should be investigated with a much denser sampling and new molecular markers with higher resolution.

The American-Macaronesian disjunction pattern of the *Persea* group—A common origin of Macaronesian *Persea indica*, *Apollonias barbujana*, and neotropical *Persea* species is indicated in the present study (Fig. 4). In the study of Rohwer et al. (2009), two possible hypotheses were proposed to explain this disjunction pattern. One is the relict hypothesis, i.e., that *Persea indica* and *Apollonias barbujana* could be interpreted as relicts from the European-Mediterranean Tertiary laurel forest. This was based on the fact that the Lauraceae have a well-documented fossil record in the Northern Hemisphere, from the early mid-Cretaceous onwards, and they persisted in Europe with considerable diversity at least until the Miocene, in southern Europe even until the Pliocene (Mai, 1971; Taylor, 1988; Drinnan et al., 1990; Crane et al., 1994; Herendeen et al., 1994; Eklund and Kvaček, 1998; Takahashi et al., 1999; Eklund, 2000 and references cited therein). However, the fact that both *Persea indica* and *Apollonias barbujana* are sister to neotropical *Persea* clades from which they diverged at a time much later than the segregation between North America and Eurasia (Fig. 5) rejects the relict hypothesis.

The other possible explanation, viz., the long-distance dispersal hypothesis, was considered less likely by Rohwer et al. (2009). Lauraceae fruits are generally dispersed by birds (Snow, 1981; Moore and Willson, 1982; Wheelwright et al., 1984), but the fruits in the *Persea* group are relatively large and heavy, and birds generally do not fly long distances with such fruits in their beak or their intestines, crossing the Atlantic eastwards from the Americas to Macaronesia against the prevailing trade winds. However, some studies have already indicated that a lot of long-distance dispersal is caused by random incidents (Wilkinson, 1997; Cain et al., 1998; Renner, 2004) and that the dispersal mechanism of the plant itself sometimes is irrelevant for long-distance dispersal (Higgins et al., 2003). Therefore, long-distance dispersal is still a possible explanation of the American–Macaronesian disjunction between the neotropical *Persea* species and the Macaronesian species *Persea indica* and *Apollonias barbujana*.

Examples for an American–Macaronesian disjunction from other plant families are apparently rare. The textbook example of *Bystropogon* L’Hérit./*Minhostachys* (Benth.) Spach (Lamiaceae) has recently been shown to be erroneous (Schmidt-Lebuhn, 2008), whereas a close relationship between the Macaronesian *Drusa glandulosa* (Poir.) H. Wolff ex Engl. and the Andean *Bowllesia palmata* Ruiz & Pavon was confirmed by Andersson et al. (2006). These authors, however, did not discuss the disjunction in terms of age, direction, and mechanism of dispersal. Panero et al. (1999) found Macaronesian *Pericallis* Webb (Asteraceae-Senecioneae) to be closely related to the North American genera *Packera* A. Löve & D. Löve, *Dorobaea* Cass, and *Pseudogyxnoxys* (Greenm.) Cabrera. They also suggested long-distance dispersal from the New World to the Macaronesian islands as the most likely explanation for this disjunction, as the tribe Senecioneae has a relatively recent post-Oligocene origin. However, in the Senecioneae with their small, wind-dispersed fruits it is of course much easier to envisage long-distance dispersal than in the Lauraceae.

Conclusions—Based on the phylogenetic analysis of ITS and LEAFY intron II sequences, several traditional genera or subgenera form well-supported monophyletic groups, viz., *Machilus, Persea* subg. *Eriodaphne, P. subg. Persea,* and *Phoebe*. The affinities of the Macaronesian species, *Persea indica* and *Apollonias barbujana*, are clearly American rather than Asian. *Apollonias barbujana* should be transferred to *Persea*, as its most important diagnostic character, viz., disporangiate anthers, occurs in neotropical *Persea* anyway. Both *Alseodaphne* (currently circumscribed as including only species with tetrasporangiate anthers) and *Dehaasia* (separated from *Alseodaphne* by nothing but disporangiate anthers, see van der Werff, 2001) are polyphylectic. While *Alseodaphne* has at least two different origins in different parts of the *Persea* group, the species of *Dehaasia* so far investigated are scattered in one of the two *Alseodaphne* groups. The only species of *Nothaphoebe* so far investigated, *N. umbelliflora*, is likewise nested in *Alseodaphne*, supporting the merging of *Nothaphoebe* in *Alseodaphne* by van der Werff (2001). Still, a major revision of *Alseodaphne, Dehaasia,* and *Nothaphoebe* is needed before numerous nomenclatural changes are made in these genera. According to the divergence time estimation, we suggest that the *Persea* group originated from the Perseeae-Laureae radiation in early Eocene Laurasia. The tropical and subtropical amphipacific disjunction pattern of the *Persea* group probably resulted from the disruption of the boreotropical flora by climatic cooling during the mid- to late Eocene. However, a few long-distance dispersal events are likely to have occurred in the *Persea* group after the separation between the American and Eurasian boreotropical forests. The American–Macaronesian disjunction pattern in the *Persea* group is also most likely explained by long-distance dispersal.

LITERATURE CITED

Appendix 1. Voucher information and GenBank accessions for ITS and LFY sequences for species examined in this study. Abbreviations of herbaria are as follows: BO, Bogor Botanical Garden; HBG, Hamburg Botanical Garden; HITBC, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences; KUN, Kunming Institute of Botany, Chinese Academy of Sciences; MJG, Miller Japanese Garden; MO, Missouri Botanical Garden; SBG, Singapore Botanic Gardens. GenBank accessions beginning with AF are from Chanderbali et al. (2001), with AY from Li et al. (unpublished), with FJ from Chen et al. (2009), with FM from Rohwer et al. (2009). GenBank accessions beginning with HQ are new sequences.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Voucher</th>
<th>Locality</th>
<th>ITS</th>
<th>LFY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingroups</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alseodaphne</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alse. andersonii (King ex Hook. f.) Kosterm.</td>
<td>Li J. & Li L. 20070074 (HITBC)</td>
<td>China, Yunnan</td>
<td>FM957793</td>
<td>HQ697002</td>
</tr>
<tr>
<td></td>
<td>Arifiani DA657 (BO)</td>
<td>Indonesia, Java</td>
<td>HQ6971181</td>
<td>HQ697003</td>
</tr>
<tr>
<td>Alse. hainanensis Merr.</td>
<td>Li L. & Wang Z. H. 20070317 (HITBC)</td>
<td>China, Hainan</td>
<td>FJ755440</td>
<td>HQ697005</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Machilius</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mac. breviflora (Benth.) Hemsl.</td>
<td>Chen J. Q. et al., 2006013(HITBC)</td>
<td>China, Guangdong</td>
<td>FJ755434</td>
<td>HQ697041</td>
</tr>
<tr>
<td>Mac. decursinervis Chun</td>
<td>Li J. 2002195 (HITBC)</td>
<td>China, Guangxi</td>
<td>AY934893</td>
<td>HQ697043</td>
</tr>
<tr>
<td>Mac. gamblei King ex Hook. f.</td>
<td>Zhong J. S. 2006094 (HITBC)</td>
<td>China, Yunnan</td>
<td>FJ755425</td>
<td>HQ697044</td>
</tr>
<tr>
<td>Mac. gongshanensis H. W. Li</td>
<td>Chen J. Q. et al., 2006001 (HITBC)</td>
<td>China, Guangdong</td>
<td>FJ755422</td>
<td>HQ697045</td>
</tr>
<tr>
<td>Mac. grijsii Hance</td>
<td>Chen J. Q. et al., 2006028 (HITBC)</td>
<td>China, Guangdong</td>
<td>FJ755420</td>
<td>HQ697046</td>
</tr>
<tr>
<td>Mac. japonica Sieb. & Zucc.</td>
<td>Kim C. K. s.n. (HBG)</td>
<td>Korea, Cheju</td>
<td>AY934891</td>
<td>HQ697048</td>
</tr>
<tr>
<td>Mac. kwangtungensis Yang</td>
<td>Chen J. Q. et al., 2006027 (HITBC)</td>
<td>China, Guangdong</td>
<td>FJ755424</td>
<td>HQ697049</td>
</tr>
<tr>
<td>Mac. leptophylla Hand.-Mazz.</td>
<td>Li J. & Li L. 20070190 (HITBC)</td>
<td>China, Zhejiang</td>
<td>FJ755430</td>
<td>HQ697050</td>
</tr>
<tr>
<td>Mac. monticola S. Lee</td>
<td>Li L. & Wang Z. H. 20070323 (HITBC)</td>
<td>China, Hainan</td>
<td>FJ755418</td>
<td>HQ697051</td>
</tr>
<tr>
<td>Mac. oculodracontis Chan</td>
<td>Chen J. Q. et al., 2006037 (HITBC)</td>
<td>China, Guangdong</td>
<td>HQ697188</td>
<td>HQ697052</td>
</tr>
<tr>
<td>Taxon</td>
<td>Voucher</td>
<td>Locality</td>
<td>ITS</td>
<td>LFY</td>
</tr>
<tr>
<td>---</td>
<td>----------------------------------</td>
<td>------------------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>Mac. oreophila Hance</td>
<td>Chen J. Q. et al., 2006067 (HITBC)</td>
<td>China, Guangdong</td>
<td>FJ755423</td>
<td>HQ697063</td>
</tr>
<tr>
<td>Mac. phoenicis Dunn</td>
<td>Chen J. Q. et al., 2006009 (HITBC)</td>
<td>China, Guangdong</td>
<td>FJ755413</td>
<td>HQ697064</td>
</tr>
<tr>
<td>Mac. pingii Cheng ex Yang</td>
<td>Li L. 20070263 (HITBC)</td>
<td>China, Sichuan</td>
<td>HQ697189</td>
<td>HQ697065</td>
</tr>
<tr>
<td>Mac. platycarpa Chun</td>
<td>Chen J. Q. et al., 2006073 (HITBC)</td>
<td>China, Guangdong</td>
<td>FJ755421</td>
<td>HQ697066</td>
</tr>
<tr>
<td>Mac. pomifera (Kosterm.) S. Lee</td>
<td>Chen J. Q. et al., 2006064 (HITBC)</td>
<td>China, Guangdong</td>
<td>FJ755432</td>
<td>HQ697068</td>
</tr>
<tr>
<td>Mac. robusta W. W. Sm.</td>
<td>Li J. 2002116 (HITBC)</td>
<td>China, Guangxi</td>
<td>FJ755426</td>
<td>HQ697070</td>
</tr>
<tr>
<td>Mac. salicina Hance</td>
<td>Chen J. Q. et al., 2005001 (HITBC)</td>
<td>China, Yunnan</td>
<td>FJ755428</td>
<td>HQ697072</td>
</tr>
<tr>
<td>Mac. salicoides S. Lee</td>
<td>Chen J. Q. et al., 2006090 (HITBC)</td>
<td>China, Guangdong</td>
<td>FJ755433</td>
<td>HQ697073</td>
</tr>
<tr>
<td>Mac. shweliensis W. W. Sm.</td>
<td>Li J. 2002087 (HITBC)</td>
<td>China, Guangxi</td>
<td>FJ755414</td>
<td>HQ697074</td>
</tr>
<tr>
<td>Mac. sp. W14068 van der Werff et al., 14068 (MO) Vietnam, Vinh Phu</td>
<td>FM957812</td>
<td>HQ697076</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mac. sp. W14071 van der Werff et al., 14071 (MO) Vietnam, Vinh Phu</td>
<td>FM957813</td>
<td>HQ697077</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mac. thunbergii Sieb. & Zucc.</td>
<td>Rohwer s.n. (HBG)</td>
<td>Germany, Hamburg</td>
<td>HQ697190</td>
<td>HQ697081</td>
</tr>
<tr>
<td>Mac. yunnanensis Lec .</td>
<td>Zhong J. S. 2006093 (HITBC)</td>
<td>China, Yunnan</td>
<td>FJ755415</td>
<td>HQ697083</td>
</tr>
</tbody>
</table>

Nothaphoebe (1)

Not. umbelliflora (Blume) Blume

Persea (21)

Per. alba Nees & Mart.

Per. americana Mill.

Per. arenolatocostae (C. K. Allen) van der Werff

Per. aurata Miq.

Per. borbonia (L.) Spreng.

Per. caerulea (Ruiz & Pav.) Mez

Per. haenkeana Mez

Per. indica (L.) Spreng.

Per. lingu (Ruiz & Pav.) Nees

Per. major (Meisn.) Kopp

Per. nudigemma van der Werff

Per. palustris (Raf.) Sarg.

Per. sp. B21834 Beck 21834

Per. sp. V25232 Vásquez & Ortiz-Gentry 25232 (MO)

Per. sp. W14857 van der Werff et al., 14857 (MO)

Per. sp. W19517 van der Werff et al., 19517 (MO)

Per. splendens Meisn.

Per. steyermarkii C. K. Allen

Per. weberbaueri Mez

Phoebe (17)

Pho. angustifolia Meissn.

Pho. chekiangensis C. B. Shang

Pho. cuneata (Blume) Blume

Appendix 1. Continued
Appendix 1. Continued

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Voucher</th>
<th>Locality</th>
<th>ITS</th>
<th>LFY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pho. elliptica (Blume) Blume</td>
<td>Samsuri & Gwee SING2004-28 (SBG)</td>
<td>Singapore</td>
<td>HQ697203</td>
<td>HQ697131</td>
</tr>
<tr>
<td>Pho. faberi (Hemsl.) Chun</td>
<td>Li L. 20070269 (HITBC)</td>
<td>China, Sichuan</td>
<td>HQ697204</td>
<td>HQ697132</td>
</tr>
<tr>
<td>Pho. formosana (Matsum. & Hay.) Hay.</td>
<td>Rohwer 156 (MJG)</td>
<td>Germany, Bonn</td>
<td>HQ697205</td>
<td>HQ697134</td>
</tr>
<tr>
<td>Pho. hungmaensis S. Lee</td>
<td>Li L. & Wang Z. H. 20070306 (HITBC)</td>
<td>China, Hainan</td>
<td>HQ697206</td>
<td>HQ697135</td>
</tr>
<tr>
<td>Pho. lanceolata (Wall. ex Nees) Nees</td>
<td>Chen Q. et al., 2006093 (HITBC)</td>
<td>China, Guangdong</td>
<td>FJ755410</td>
<td>HQ697136</td>
</tr>
<tr>
<td>Pho. macrocarpa C. Y. Wu</td>
<td>Li J. 2002207 (HITBC)</td>
<td>China, Guangxi</td>
<td>FJ755408</td>
<td>HQ697137</td>
</tr>
<tr>
<td>Pho. megacalyx H. W. Li</td>
<td>Li J. & Li L. 20070026 (HITBC)</td>
<td>China, Yunnan</td>
<td>HQ697207</td>
<td>HQ697138</td>
</tr>
<tr>
<td>Pho. minutiflora H. W. Li</td>
<td>Chen J. Q. et al., 2005038 (HITBC)</td>
<td>China, Yunnan</td>
<td>HQ697208</td>
<td>HQ697139</td>
</tr>
<tr>
<td>Pho. nanna (Oliv.) Gamble</td>
<td>Chen J. Q. et al., 2005002 (HITBC)</td>
<td>China, Yunnan</td>
<td>FJ755409</td>
<td>HQ697140</td>
</tr>
<tr>
<td>Pho. neurantha (Hems.) Gamble</td>
<td>Li J. & Li L. 20070214 (HITBC)</td>
<td>China, Zhejiang</td>
<td>HQ697209</td>
<td>HQ697141</td>
</tr>
<tr>
<td>Pho. puwenensis Cheng</td>
<td>Chen J. Q. et al., 2006065 (HITBC)</td>
<td>China, Guangdong</td>
<td>HQ697210</td>
<td>HQ697142</td>
</tr>
<tr>
<td>Pho. sp. A49 Arifiani 49 (MO)</td>
<td>Indonesia</td>
<td></td>
<td>HQ697211</td>
<td>HQ697143</td>
</tr>
<tr>
<td>Pho. sp. L20070260 (Not. cavaleriei (Lév.) Yang)</td>
<td>Li L. 20070260 (HITBC)</td>
<td>China, Sichuan</td>
<td>FJ755412</td>
<td>HQ697144</td>
</tr>
<tr>
<td>Pho. zhennan S. Lee & F. N. Wei</td>
<td>Li L. 20070239 (HITBC)</td>
<td>China, Sichuan</td>
<td>HQ697212</td>
<td>HQ697145</td>
</tr>
</tbody>
</table>

Outgroups

| Actinodaphne (2) Act. capularis (Hemsl.) Gamble | Li L. 20070231 (HITBC) | China, Sichuan | HQ697213 | HQ697146 |
| Act. trichocarpa C. K. Allen | Li L. 20070282 (HITBC) | China, Sichuan | HQ697214 | HQ697147 |

| Lindera (2) Lin. erythrocarpa Makino | Li J. & Li L. 20070203 (HITBC) | China, Zhejiang | HQ697215 | HQ697148 |

| Lin. megaphylla Hemsl. | Li L. 20070236 (HITBC) | China, Sichuan | HQ697216 | HQ697149 |

Litsea (2) Lit. auriculata Chien et Cheng	Li J. & Li L. 20070195	China, Zhejiang (HITBC)	HQ697217	HQ697150
Lit. verticillata Hance	Li L. & Wang Z. H. 20070337 (HITBC)	China, Hainan	HQ697218	HQ697151
Neolitsea (3) Neo. cambodiana Lee.	Li L. & Wang Z. H. 20070327 (HITBC)	China, Hainan	HQ697219	HQ697152
Neo. howii C. K. Allen	Li L. & Wang Z. H. 20070379 (HITBC)	China, Hainan	HQ697220	HQ697153
Neo. sericea (Blume) Koidz.	Li J. & Li L. 20070225 (HITBC)	China, Zhejiang	HQ697221	HQ697154