Review

Viral proteins function as ion channels

Kai Wang a, Shiqi Xie a, Bing Sun a,b,⁎

a Laboratory of Molecular Virology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 225 South Chongqing Road, Shanghai 200025, China
b Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China

ABSTRACT

Viral ion channels are short membrane proteins with 50–120 amino acids and play an important role either in regulating virus replication, such as virus entry, assembly and release or modulating the electrochemical balance in the subcellular compartments of host cells. This review summarizes the recent advances in viral encoded ion channel proteins (or viroporins), including PBCV-1 Kcv, influenza M2, HIV-1 Vpu, HCV p7, picornavirus 2B, and coronavirus E and 3a. We focus on their function and mechanisms, and also discuss viral ion channel protein serving as a potential drug target.

© 2010 Elsevier B.V. All rights reserved.

Keywords:
Viral ion channels
PBCV-1
Influenza
HIV-1
HCV
Picornavirus
Coronavirus

1. Introduction

Since M2 protein of influenza virus A was reported to have ion channel activity in 1992 [1], several ion channel proteins encoded by viruses have been discovered. This new family of virus proteins that enhance membrane permeability was named viroporins, and includes small proteins that contain at least one hydrophobic transmembrane (TM) domain [2]. Typically, viroporins are comprised of 50–120 amino acids (Table 1), which tend to form homo-oligomers, most of them frequently forming tetramers. Oligomerization of these subunits produces a hydrophilic pore which facilitates ion transport across host cell membranes. The functions of these viral channel proteins may be involved in many stages of the virus infection cycle.

2. Function of viral ion channels

2.1. PBCV-1 Kcv

Chlorella virus PBCV-1 encodes a 94 aa protein, Kcv, which has two transmembrane domains separated by 44 amino acids that contain...
the K+ channel signature sequence TXTXXFGF. When expressed in Xenopus oocytes [30] or mammalian HEK293 [32] and CHO cells [41], Kcv shows a potassium-selective conductance, which is sensitive to K+ channel blockers Ba2+. The PBCV-1 Kcv channel has an overall K+ channel architecture, which is similar to the bacterial channels KcsA and KirBac as well as to eukaryotic Kir channels [42,43].

Six Kcv-like proteins forming functional K+-selective channels were identified from 40 additional cholerella viruses [44]. Recently a K+ channel protein (82 amino acids, named ATCV-1 Kcv) was found in another cholerella virus, Acanthocystis turfea sa chlorella virus; BEFV, bovine ephemeral fever virus; MHV, murine hepatitis virus; SARS-CoV, Severe acute respiratory syndrome-associated coronavirus.

The transmembrane domain of influenza A virus M2 and influenza B virus BM2 both contain the motif HXXXW. The high proton selectivity of A/M2 is conferred by histidine residue 37 [54], and the channel gate is conferred by tryptophan 41 [55]. At low pH, the His37 H+ selectivity filter becomes protonated and the indole ring of Trp41 rotates to permit protons to pass. The function of M2 channel activity is to promote virus uncoating in endosomes [56] and to affect glycoprotein processing and trafficking [57,58].

2.2. HIV-1 Vpu

Vpu is a 16 kDa protein expressed by HIV-1 gene vpu, which is absent from HIV-2 and other simian immunodeficiency viruses except for the simian immunodeficiency virus of the chimpanzee (SIVcpz) [62,63]. The Vpu was encoded by the Rev-dependent bicistronic mRNA and has three α-helices: one in the transmembrane domain at the N-terminal and the other two in the cytoplasmic domain [64,65]. The two serines at positions 52 and 56 within the cytoplasmic domain are important to the CD4 degradation function of Vpu [66].

In some cell lines, Vpu is essential for the release of virus particles [62,67,68]. The absence of Vpu in a viral genome can lead to the retention of virus particles in the cell plasma membrane [68]. In early studies, it was unclear how the deficiency of Vpu might affect virus release. Nevertheless, some functions of Vpu were determined. Firstly, Vpu can lead to the degradation of CD4 [69], which seems to be irrelevant to the activity of Vpu in enhancement of virus release [65,70]. Next, the transmembrane domain at the N-terminal of Vpu was found to have ion channel activity in vitro and to be involved in the regulation of virus release [14]. The mutant Vpu with no CD4 degradation activity can also facilitate virus release. Moreover, additional expression of Vpu protein of HIV-1 enhances the release of several other viruses, including Sindbis virus, murine leukemia virus (MLV), HIV-2 and visna virus [14,71]. However, with these limited data, we cannot understand the detailed mechanism that how Vpu facilitates virus release.

2.3. HIV-1 TASK-1 and lead to a degradation of this potassium channel. On the other hand, the efflux of potassium ions is important to the CD4 degradation function of Vpu [66].

Infection of chlorella NC64A cells by PBCV-1 produces a rapid depolarization of the host cell. Kcv is considered responsible for this mutual exclusion phenomenon [48].
other hand, the first transmembrane domain of TASK-1 could be regarded as a functional equivalent for Vpu in virus release. However this work has never been confirmed in any later work.

The most recent studies were based on some interesting phenomenon. It was observed that the dependence of Vpu in HIV release is present in some cell lines (HeLa etc.) but absent in others (HIV etc.) [75]. In additions, this dependence could be induced by interferon-α in 293T cells or enhanced in Jukat cells [76]. A study on fusion of between HeLa and COS-7 cells suggested the existence of an inhibitor to virus release which could be antagonized by Vpu protein in HeLa cells but not in COS-7 cells [75]. Finally this inhibitor, CD317/ST2, was revealed by using RNA microarray and was named ‘tetherin’ [77]. Later studies demonstrated that the inhibition by CD317/ST2 of virus release is a common mechanism through which host cells protect themselves. A similar phenomenon could be found in Lassa and Marburg virus [78], SIV [79] and Kaposi’s sarcoma-associated herpesvirus (KSHV) [80]. Direct interactions between tetherin and HIV virions have also been noted [81]. However, there is still some controversy concerning the detailed mechanisms by which Vpu can downregulate tetherin [82–84].

Varthakavi et. al. reported another cellular factor, calcium-modulating cyclophilin ligand (CAML), a second cellular restriction factor that Vpu antagonizes to enhance HIV-1 release [85]. Currently, the manner in which Vpu overcomes CAML restriction effect is not clear. Although it was proved that the Vpu function is associated with virus release, the question of whether the ion channel activity of the transmembrane domain is required for the viral release is still debated. TASK-1 offered a very good opportunity to link them together. However, available evidence remains inadequate to demonstrate whether TASK-1–Vpu interaction is really important for the regulation of HIV release. We trust that future evidence will illuminate the detailed relationship between the functions of Vpu and the HIV life cycle.

2.4. HCV p7

The p7 protein from HCV is the cleavage product from an E2-NS2 intermediate which consists of only 63 amino acids [86]. It has two transmembrane domains and is mainly located on ER, mitochondrial and plasma membranes [87,88]. Its ion channel activity was first reported in 2003 by using lipid bilayer system [28,29]. Little is known about the function of p7 in the virus life cycle. It was found to be essential for HCV infection in an in vivo study [89]. After the discovery of the HCV cell culture system, more data suggested that p7 could facilitate virus assembly and release, functioning mainly at the late stage of virus propagation [90]. Recently, the establishment of a trans-complementary system of p7 provided us a powerful tool with which to study the function of p7 in the HCV life cycle. It also led to the hypothesis that p7 could affect virus in two aspects: its own function and the cleavage of an E2-p7-NS2 intermediate [91]. However, the study of p7 is just at its beginning, the links between p7 function and virus propagation remain to be found and their mechanisms remain to be illuminated.

2.5. Picornavirus 2B

Picornaviruses are small positive strand RNA viruses which express their mature proteins from a poly protein that will be cleaved by protease. 2B protein is one of these mature proteins which consists of about 99 amino acids (varies in different viruses). Until now, most studies have been focused on 2B from poliovirus and coxsackievirus B3.

2B protein is mainly localized on ER and Golgi [8,92]. It can form dimers and tetramers, as has been proven by yeast-two-hybrid [93,94] and fluorescent resonance energy transfer microscopy [95]. At first, it was reported that 2B, along with its precursor 2BC and another matured protein 3A, could modify membrane permeability to hygromycin B [4,5,96]. These data led to studies indicating that 2B can form a viroporin and contribute to the viral life cycle.

2B proteins are involved in several cellular and viral life stages. 2B in poliovirus was found to be associated with cellular protein secretion [5] and the disassembly of the Golgi complex, the same phenomenon that can be induced by poliovirus infection [97]. Moreover, some in vitro studies showed that insertion of poliovirus 2B protein into lipid bilayers can modulate the permeability of the membrane, even allowing the passage of small molecules [98]. In coxsackievirus B3, 2B protein was reported to facilitate virus release by inducing a calcium efflux from endoplasmic reticulum into the cell plasma [7]. The hypothesis is that 2B protein can suppress cell apoptosis by manipulating calcium homeostasis and thus can protect virus from some host anti-viral mechanisms [99]. However, it is still unclear whether 2B protein can adjust the calcium concentration by itself or by affecting some other host proteins. Our recent studies on enterovirus 71 2B protein showed that 2B could induce a chloride-selective current in Xenopus oocytes and could aid in virus release. Its detailed mechanisms need further investigation [Xie et al. in submission].

2.6. Coronavirus E and 3a

In Coronaviridae, it was demonstrated that the envelope (E) proteins of MHV, SARS-CoV, HCoV-229E and IBV exhibit viroporin activity [35,37,38,100–103]. The E protein of SARS-CoV is 76 amino acids long, contains one predicted TM domain and forms a pentameric ion channel [35,36,103,104]. The SARS-CoV E protein is more selective for Na+ than for K+ ions, status similar to that of Alphavirus 6 k proteins [11]. Although E protein is not essential for MHV replication, the E gene deleted MHV recombinant virus showed low growth rate and low titer, and produced small plaques [105]. Previously, E protein was demonstrated to play a role in viral assembly and morphogenesis [106–108], but how its ion channel activity mediates these functions is still unknown.

Our laboratory found that another protein, 3a of SARS-CoV, could form an ion channel and modulate viral release [39]. The ORF3 gene of SARS-CoV encodes a 274aa protein, containing three TM domains [40] and forms homo-tetramers [39]. When 3a is expressed in Xenopus oocytes, the K+ channel activity was detected and could be blocked by Ba2+ [99]. The siRNA knockdown experiment showed that 3a protein plays a role in viral release. We predicted the existence of 3a protein homologue in different human coronaviruses, and its location between coronavirus Spike (S) gene and Envelope (E) gene on the viral genome. For convenience, we called this gene SNE [40]. Our recent work demonstrated that other SNE genes, such as PEDV ORF3, also encode an ion channel protein [Wang et. al. in submission]. Since it contains three TM domains and a relative long cytoplasmic domain, SARS-CoV 3a protein is larger than previously reported viroporins, including coronavirus E protein. It was well documented that the N terminus of HIV-1 Vpu encoding the TM domain forms ion channels and modulates viral release, while its cytoplasmic domain has many other functions, such as CD4 degradation [65]. The cytoplasmic part of 3a may also have many interesting functions, and it has been already reported that 3a protein contains putative binding sites for caveolin-1 [109], and their interaction has been demonstrated by Padhan et al. [110].

3. Viral channel as drug target

One of the main reasons for the focus on virus ion channels was that they may serve as ideal anti-viral drug targets. Amantadine was one of the most studied and famous inhibitors for the influenza A virus M2 proton channel. Although encumbered with severe side effects, amantadine has been used clinically as an anti-influenza drug since 1966 [111]. Then in 1985, a study indicated that several mutations, which could lead to resistance to amantadine, were located in a hydrophobic sequence in M2. This data suggested that M2 might be the target for amantadine [112]. Then, in 1992 direct evidence was offered indicating that amantadine could inhibit an early M2-dependent stage.
throughput methods have been developed to achieve the same goal by
amantadine were regarded as a very good model in which to study
the structure of M2 and mutations induced by drug-related selection
pressure. There were two papers explaining the structure-based
mechanism of the manner in which mutations in M2 can lead to
drug resistance to amantadine [114,115].

Amiloride derivatives were reported to block HIV-1 Vpu and coronavirus E protein ion channel activity [38,116]. The newly
discovered HCV ion channel protein p7 was likely to become the first
anti-viral drug screen target used in practice. After the
identification of p7 ion channel activity, several studies revealed
that this activity can be inhibited by amantadine [28], hexamethylene
amiloride (HMA) [117] and long-alkyl-chain iminosugar derivatives
[29]. Interestingly, although the amino acid sequences of p7 vary in
different genotypes of HCV, all of them have a specific reaction in
response to these drug treatments [118], indicating that p7 might be a
good target for anti-HCV drug screening. Furthermore, an in vitro
liposome-based drug screen system has been established [119,120],
appears very helpful in investigation of viral ion channel activity and
may be developed into a suitable method for anti-viral drug screening.

4. Summary

The ion channel proteins were found in many different virus families,
play important roles in the life cycle of viruses, and serve as promising
anti-viral drug targets. PBCV-1 Kcv and influenza A virus M2 are highly
selective channel components, which form potassium channel and
proton channel, respectively. In contrast, other viral ion channel
proteins, such as HIV-1 Vpu and HCV p7 are permeable to both Na+
and K+ ions, and display relatively low ion selectivity. As the smallest K+
channel, Kcv contains a motif of eight amino acids, TXXTXGFG, which is
common to all the potassium channels. The channel structure and
function studied in influenza A virus M2 are well defined. However,
these elements remain unclear with respect to other viral ion channel
proteins.

Although great effort has been spent in this field, there are still
many questions remaining to be answered. Firstly, as the ion channel
activity of most viroporins was identified by using an in vitro system
such as lipid bilayer or Xenopus oocytes, their real biological function
in virus-infected cells or animals remains to be investigated. Only the
ion channel activity of Kcv and A/M2 was directly associated with a
viral life cycle stage [46,112,113]. The function of the ion channel
activity of Kcv and A/M2 was directly associated with a
selectivity, which form potassium channel and
proton channel, respectively. In contrast, other viral ion channel
proteins, such as HIV-1 Vpu and HCV p7 are permeable to both Na+
and K+ ions, and display relatively low ion selectivity. As the smallest K+
channel, Kcv contains a motif of eight amino acids, TXXTXGFG, which is
common to all the potassium channels. The channel structure and
function studied in influenza A virus M2 are well defined. However,
these elements remain unclear with respect to other viral ion channel
proteins.

Although great effort has been spent in this field, there are still
many questions remaining to be answered. Firstly, as the ion channel
activity of most viroporins was identified by using an in vitro system
such as lipid bilayer or Xenopus oocytes, their real biological function
in virus-infected cells or animals remains to be investigated. Only the
ion channel activity of Kcv and A/M2 was directly associated with a
viral life cycle stage [46,112,113]. The function of the ion channel
activity of Kcv and A/M2 was directly associated with a
selectivity, which form potassium channel and
proton channel, respectively. In contrast, other viral ion channel
proteins, such as HIV-1 Vpu and HCV p7 are permeable to both Na+
and K+ ions, and display relatively low ion selectivity. As the smallest K+
channel, Kcv contains a motif of eight amino acids, TXXTXGFG, which is
common to all the potassium channels. The channel structure and
function studied in influenza A virus M2 are well defined. However,
these elements remain unclear with respect to other viral ion channel
proteins.

Although great effort has been spent in this field, there are still
many questions remaining to be answered. Firstly, as the ion channel
activity of most viroporins was identified by using an in vitro system
such as lipid bilayer or Xenopus oocytes, their real biological function
in virus-infected cells or animals remains to be investigated. Only the
ion channel activity of Kcv and A/M2 was directly associated with a
viral life cycle stage [46,112,113]. The function of the ion channel
activity of Kcv and A/M2 was directly associated with a
selectivity, which form potassium channel and
proton channel, respectively. In contrast, other viral ion channel
proteins, such as HIV-1 Vpu and HCV p7 are permeable to both Na+
and K+ ions, and display relatively low ion selectivity. As the smallest K+
channel, Kcv contains a motif of eight amino acids, TXXTXGFG, which is
common to all the potassium channels. The channel structure and
function studied in influenza A virus M2 are well defined. However,
these elements remain unclear with respect to other viral ion channel
proteins.

Although great effort has been spent in this field, there are still
many questions remaining to be answered. Firstly, as the ion channel
activity of most viroporins was identified by using an in vitro system
such as lipid bilayer or Xenopus oocytes, their real biological function
in virus-infected cells or animals remains to be investigated. Only the
ion channel activity of Kcv and A/M2 was directly associated with a
viral life cycle stage [46,112,113]. The function of the ion channel
activity of Kcv and A/M2 was directly associated with a
selectivity, which form potassium channel and
proton channel, respectively. In contrast, other viral ion channel
proteins, such as HIV-1 Vpu and HCV p7 are permeable to both Na+
and K+ ions, and display relatively low ion selectivity. As the smallest K+
channel, Kcv contains a motif of eight amino acids, TXXTXGFG, which is
common to all the potassium channels. The channel structure and
function studied in influenza A virus M2 are well defined. However,
these elements remain unclear with respect to other viral ion channel
proteins.

Although great effort has been spent in this field, there are still
many questions remaining to be answered. Firstly, as the ion channel
activity of most viroporins was identified by using an in vitro system
such as lipid bilayer or Xenopus oocytes, their real biological function
in virus-infected cells or animals remains to be investigated. Only the
ion channel activity of Kcv and A/M2 was directly associated with a
viral life cycle stage [46,112,113]. The function of the ion channel
activity of Kcv and A/M2 was directly associated with a
selectivity, which form potassium channel and
proton channel, respectively. In contrast, other viral ion channel
proteins, such as HIV-1 Vpu and HCV p7 are permeable to both Na+
and K+ ions, and display relatively low ion selectivity. As the smallest K+
channel, Kcv contains a motif of eight amino acids, TXXTXGFG, which is
common to all the potassium channels. The channel structure and
function studied in influenza A virus M2 are well defined. However,
these elements remain unclear with respect to other viral ion channel
proteins.

Although great effort has been spent in this field, there are still
many questions remaining to be answered. Firstly, as the ion channel
activity of most viroporins was identified by using an in vitro system
such as lipid bilayer or Xenopus oocytes, their real biological function
in virus-infected cells or animals remains to be investigated. Only the
ion channel activity of Kcv and A/M2 was directly associated with a
viral life cycle stage [46,112,113]. The function of the ion channel
activity of Kcv and A/M2 was directly associated with a
selectivity, which form potassium channel and
proton channel, respectively. In contrast, other viral ion channel
proteins, such as HIV-1 Vpu and HCV p7 are permeable to both Na+
and K+ ions, and display relatively low ion selectivity. As the smallest K+
channel, Kcv contains a motif of eight amino acids, TXXTXGFG, which is
common to all the potassium channels. The channel structure and
function studied in influenza A virus M2 are well defined. However,
these elements remain unclear with respect to other viral ion channel
proteins.

Although great effort has been spent in this field, there are still
many questions remaining to be answered. Firstly, as the ion channel
activity of most viroporins was identified by using an in vitro system
such as lipid bilayer or Xenopus oocytes, their real biological function
in virus-infected cells or animals remains to be investigated. Only the
ion channel activity of Kcv and A/M2 was directly associated with a
viral life cycle stage [46,112,113]. The function of the ion channel
activity of Kcv and A/M2 was directly associated with a
selectivity, which form potassium channel and
proton channel, respectively. In contrast, other viral ion channel
proteins, such as HIV-1 Vpu and HCV p7 are permeable to both Na+
and K+ ions, and display relatively low ion selectivity. As the smallest K+
channel, Kcv contains a motif of eight amino acids, TXXTXGFG, which is
common to all the potassium channels. The channel structure and
function studied in influenza A virus M2 are well defined. However,
these elements remain unclear with respect to other viral ion channel
proteins.

Although great effort has been spent in this field, there are still
many questions remaining to be answered. Firstly, as the ion channel
activity of most viroporins was identified by using an in vitro system
such as lipid bilayer or Xenopus oocytes, their real biological function
in virus-infected cells or animals remains to be investigated. Only the
ion channel activity of Kcv and A/M2 was directly associated with a
viral life cycle stage [46,112,113]. The function of the ion channel
activity of Kcv and A/M2 was directly associated with a
selectivity, which form potassium channel and
proton channel, respectively. In contrast, other viral ion channel
proteins, such as HIV-1 Vpu and HCV p7 are permeable to both Na+
and K+ ions, and display relatively low ion selectivity. As the smallest K+
channel, Kcv contains a motif of eight amino acids, TXXTXGFG, which is
common to all the potassium channels. The channel structure and
function studied in influenza A virus M2 are well defined. However,
these elements remain unclear with respect to other viral ion channel
proteins.


