• ● Faculty and Staff
Xingyu Jiang
Academic title:
Postal Code:
Subject categories:
Chemical biology
Mailing Address:
No.11,Beiyitiao Zhongguancun Beijing,china

Xingyu Jiang is a principle investigator in the National Center for NanoScience and Technology of China (NCNST). His research interests include surface chemistry, microfluidics, micro/nano-fabrication, cell biology and immunoassays. Born and raised in Chengdu, Xingyu obtained his Bachelor’s Degree at The University of Chicago (1999), followed by an A.M. (2001) and a Ph. D. (2004) from Harvard University (Chemistry), working with Professor George Whitesides on microfluidics and cell patterning. After a short postdoctoral fellowship with Professor George Whitesides, he joined NCNST in 2005.

nano biomedicine



1. Visual detection of copper (II) by azide- and alkyne-functionalized gold nanoparticles using click chemistry. Zhou, Y., Wang, S.X., Zhang, K., Jiang, X.Y., Angew. Chem. Int. Ed., 47 (39), 7454-7456 (2008). pdf

2. A method for patterning multiple types of cells by using electrochemical desorption of self-assembled monolayers within microfluidic channels. Li, Y., Yuan, B., Ji, H., Han, D., Chen, S.Q., Tian, F., Jiang, X.Y., Angew. Chem. Int. Ed., 46 (7), 1094-1096 (2007).pdf

3. Fabrication of aligned fibrous arrays by magnetic electrospinning. Yang, D., Lu, B., Zhao, Y., Jiang, X.Y., Adv. Mater., 19(21), 3702-3706 (2007).pdf

4. Electrospun nanofibrous membranes: a novel solid substrate for microfluidic immunoassays for HIV. Yang, D.Y., Niu, X., Liu, Y.Y., Wang, Y., Gu, X., Song, L.S., Zhao, R., Ma, L.Y., Shao, Y.M., Jiang X.Y., Adv. Mater., 20 (24), 4770-4775 (2008). pdf

5. Using azobenzene-embedded self-assembled monolayers to reversibly control cell adhesion. Liu, D.B., Xie, Y.Y., Shao, H.W.*, Jiang, X.Y., Angew. Chem. Int. Ed., 48(24), 4406-4408 (2009).pdf

6.  Loop-Mediated isothermal amplification integrated on microfluidic chips for Point-of-Care quantitative detection of pathogens. Fang, X.E., Liu, Y.Y., Kong, J.L., Jiang, X.Y., Anal. Chem., 82 (7), 3002–3006 (2010). pdf

7. Modular microfluidics for gradient generation. Sun, K., Wang, Z.X., Jiang, X.Y., Lab Chip, 8, 1536-1543 (2008). pdf

8. Incorporation of electrospun nanofibrous PVDF membranes into a microfluidic chip assembled by PDMS and scotch tape for immunoassays. Liu, Y.Y., Yang, D.Y.*, Yu, T., Jiang, X.Y., Electrophoresis, 30 (18), 3269–3275 (2009). pdf

9. Highly Sensitive, Colorimetric Detection of Mercury(II) in Aqueous Media by Quaternary Ammonium Group-Capped Gold Nanoparticles at Room Temperature, Liu, D.B, Qu, W. S., Chen, W. W., Zhang, W., Wang, Z., Jiang, X. Y., Anal. Chem., 82(23), 9606-9610 (2010). pdf

10. Combining nano Surface chemistry and microfluidics for molecular analysis and cell biology. Sun, Y., Liu, Y.Y., Qu, W.S., Jiang, X.Y., Anal. Chim. Acta., 650(1), 98–105 (2009).pdf

11. Small-molecule capped gold nanoparticles as potent antibacterial agents that target Gram-negative bacteria. Zhao, Y.Y., Tian, Y., Cui, Y., Liu, W.W, Ma, W.S. and Jiang, X.Y., J. Am. Chem. Soc., 132 (35), 12349–12356 (2010). pdf

12. Electrospinning of poly(dimethylsiloxane)/poly(methylmethacrylate) nanofibrous membrane: fabrication and application in protein microarrays. Yang, D.Y., Liu, X., Jin, Y., Zhu, Y., Zeng, D.D., Jiang, X.Y., Ma, H.W., Biomacromolecules, 10 (12), 3335-3340 (2009). pdf

13. Patterning multiple types of mammalian cells for modeling three types of naturally occurring cell-cell interactions. Chen, Z.L., Li, Y., Liu, W.W., Zhang, D.Z., Zhao, Y.Y., Yuan, B., Jiang, X.Y., Angew. Chem. Int. Ed., 48 (44), 8303-8305 (2009). pdf

14. Fabrication of necklace-like structures via electrospinning. Jin, Y., Yang, D.Y.*, Kang, D.Y., Jiang, X.Y., Langmuir, 26 (2), 1186-1190 (2010). pdf

15. A simple design in PDMS-based microfluidic channels that removess bubbles in long-term on-chip culture of mammalian cells, Zheng, W.F., Wang, Z., Zhang, W., Jiang, X.Y., Lab Chip, 10, 2906-2910 (2010). pdf

16. Microfluidic Western Blot. Pan, W.Y., Chen, W., Jiang, X.Y., Anal. Chem., 82, 3974–3976 (2010). pdf

17. A stretching device for imaging real-time molecular dynamics of live cells adhering to elastic membranes on inverted microscopes during the entire process of the stretch. Wang, D., Xie, Y.Y., Yuan B., Xu J., Gong P.Y. and Jiang, X.Y., Integr. Biol., 2, 288–293 (2010). pdf

18. Gold nanoparticles for the colorimetric and fluorescent detection of ions and small organic molecules, Liu, D., Wang, Z., Jiang, X.Y, Nanoscale, 3 (4), 1421 – 1433 (2011).pdf

19. A general approach for patterning multiple types of cells using holey PDMS membranes and microfluidic channels, Yuan B., Li Y., Wang D., Xie Y., Liu Y., Cui L., Tu F., Li H., Ji H., Zhang W., Jiang X.Y., Adv. Funct. Mater. 20, 3715-3720 (2010). pdf

20. Copper-mediated amplification allows readout of immunoassays by the naked Eye, Qu,W., Liu, Y., Liu, D., Wang, Z, Jiang X.Y., Angew. Chem. Int. Ed. 50, 3442-3445(2011). pdf

21. Resettable, Multi-Readout Logic Gates Based on Controllably Reversible Aggregation of Gold Nanoparticles, Liu, D., Chen, W., Sun, K., Deng, K., Zhang, W., Wang, Z., Jiang, X.Y., Angew. Chem. Int. Ed. 50, 4103-4107(2011)pdf

22. Colorimetric detection of mercury, lead and copper ions simultaneously using protein-functionalized gold nanoparticles, Guo,Y., Wang, Z., Qu, W., Shao, H., Jiang, X.Y., Biosens. Bioelectron., 26 (10), 4058-4063 (2011). pdf

Community service:

Commitment to research the situation: