Location:Home>Papers
A. Rohrmann, P. Kapp, B. Carrapa, P. W. Reiners, J. Guynn, L. Ding and M. Heizler
Author:
Abstract: The timing of Tibetan plateau development remains elusive, despite its importance for evaluating models of continental lithosphere deformation and associated changes in surface elevation and climate. We present new thermochronologic data [biotite and K-feldspar Ar-40/Ar-39, apatite fission track, and apatite (U-Th)/He] from the central Tibetan plateau (Lhasa and Qiangtang terranes). The data indicate that over large regions, rocks underwent rapid to moderate cooling and exhumation during Cretaceous to Eocene time. This was coeval with >50% upper crustal shortening, suggesting substantial crustal thickening and surface elevation gain. Thermal modeling of combined thermochronometers requires exhumation of most samples to depths of <3 km between 85 and 45 Ma, followed by a decrease in erosional exhumation rate to low values of <0.05 mm/yr. The thermochronological results, when interpreted in the context of the deformation and paleoaltimetric history, are best explained by a scenario of plateau growth that began locally in central Tibet during the Late Cretaceous and expanded to encompass most of central Tibet by 45 Ma.
Contact the author:
Page number: 187-190
Issue: 2
Subject:
Authors units:
PubYear: 2012
Volume: 40
Publication name: Geology
Abstract: The timing of Tibetan plateau development remains elusive, despite its importance for evaluating models of continental lithosphere deformation and associated changes in surface elevation and climate. We present new thermochronologic data [biotite and K-feldspar Ar-40/Ar-39, apatite fission track, and apatite (U-Th)/He] from the central Tibetan plateau (Lhasa and Qiangtang terranes). The data indicate that over large regions, rocks underwent rapid to moderate cooling and exhumation during Cretaceous to Eocene time. This was coeval with >50% upper crustal shortening, suggesting substantial crustal thickening and surface elevation gain. Thermal modeling of combined thermochronometers requires exhumation of most samples to depths of <3 km between 85 and 45 Ma, followed by a decrease in erosional exhumation rate to low values of <0.05 mm/yr. The thermochronological results, when interpreted in the context of the deformation and paleoaltimetric history, are best explained by a scenario of plateau growth that began locally in central Tibet during the Late Cretaceous and expanded to encompass most of central Tibet by 45 Ma.
The full text link: http://dx.doi.org/10.1007/s11434-010-0015-8